บริการซ่อมคอมพิวเตอร์ภายในวิทยาลัยเทคนิคสมุทรสงคราม
หาคำศัพท์ 10 คำ พร้อมคำแปลและท่องคำศัพท์ ให้อาจารย์ฟัง
ทั้ง 10 คำ
วันเสาร์ที่ 5 กันยายน พ.ศ. 2552
ส.12 เรื่อง Windows XP
ส่วนประกอบของ Windows XP
เดสก์ทอป (Desktop) คือบริเวณพื้นที่หรือฉากของระบบปฏิบัติการ Windows เปรียบเสมือนส่วนบนของโต๊ะทำงาน ซึ่งบริเวณนี้เป็นส่วนแสดง Icon หรือ Windows ที่เปิดทำงาน และเป็นส่วนที่ติดต่อกับผู้ใช้โดยตรง ซึ่งแสดงผลให้สามารถรับรู้ได้ และผู้ใช้สามารถโต้ตอบการทำงานได้ ดังแสดงในรูป
Taskbar เป็นแถบแสดง Start Menu และหากมีโปรแกรมเปิดใช้งานอยู่ จะแสดงแถบชื่อโปรแกรมให้เห็นที่ Taskbar ดังรูป หากต้องการใช้งานโปรแกรมใด ให้คลิกที่แถบชื่อโปรแกรมนั้น และถ้ามีการปิดโปรแกรมที่ใช้งานอยู่ แถบของโปรแกรมนั้นจะหายไปจาก Taskbar
เมนู Start (Start Menu)
ปุ่ม Start เป็นปุ่มสำหรับเรียก เมนูหลักของระบบปฏิบัติการ Windows XP ซึ่งจะประกอบด้วย
เมนู (Menu) สำหรับเปิดเมนูย่อยหรือเรียกใช้โปรแกรมของระบบ Windows XP
เมนูย่อย (Submenu) สำหรับเปิดเมนูย่อยหรือเรียกใช้โปแกรมต่าง ๆ ที่ติดตั้งไว้
การใช้งานโปรแกรม
การเรียกใช้งานต่างๆ ที่อยู่ในเครื่อง ให้คลิกที่ปุ่ม Start แล้วเลื่อนเมาส์ไปที่ All Programs จะปรากฏโปรแกรมที่มีอยู่ในเครื่องดังภาพข้างล่าง
หน้าต่าง (Windows)
1. ไตเติลบาร์ (Title bar) แสดงชื่อของโปรแกรมที่ใช้งานอยู่
2. เมนูบาร์ (Menu Bar) แสดงเมนูของโปรแกรมใช้ในการเลือกคำสั่ง
3. แถบเครื่องมือ (Toolbar) เป็นรูปภาพเล็ก ๆ แทนคำสั่งใช้งานต่าง ๆ
4. แถบตำแหน่ง (Addressbar) แสดงตำแหน่ง ณ ขณะนั้น
5. มินิไมซ์ (minimize) ปุ่มลดขนาดหน้าต่างหรือปิดหน้าต่าง
6. แมกซิไมซ์ (Maximize) ขยายหน้าต่างให้เต็มจอ
7. ปุ่มปิดโปแกรม (Close) ใช้ในการปิดโปรแกรม
8. ไอคอน (Icon) คือ รูปสัญลักษณ์ที่ใช้เรียกโปรแกรม
9. แถบเลื่อน (Scroll Bar) ใช้ในการเลื่อนหน้าจอไปซ้าย ขวา ขึ้นลงตามทิศทางลูกศร
10. แถบสถานะ (Status Bar) แสดงสถานะการทำงาน
เดสก์ทอป (Desktop) คือบริเวณพื้นที่หรือฉากของระบบปฏิบัติการ Windows เปรียบเสมือนส่วนบนของโต๊ะทำงาน ซึ่งบริเวณนี้เป็นส่วนแสดง Icon หรือ Windows ที่เปิดทำงาน และเป็นส่วนที่ติดต่อกับผู้ใช้โดยตรง ซึ่งแสดงผลให้สามารถรับรู้ได้ และผู้ใช้สามารถโต้ตอบการทำงานได้ ดังแสดงในรูป
Taskbar เป็นแถบแสดง Start Menu และหากมีโปรแกรมเปิดใช้งานอยู่ จะแสดงแถบชื่อโปรแกรมให้เห็นที่ Taskbar ดังรูป หากต้องการใช้งานโปรแกรมใด ให้คลิกที่แถบชื่อโปรแกรมนั้น และถ้ามีการปิดโปรแกรมที่ใช้งานอยู่ แถบของโปรแกรมนั้นจะหายไปจาก Taskbar
เมนู Start (Start Menu)
ปุ่ม Start เป็นปุ่มสำหรับเรียก เมนูหลักของระบบปฏิบัติการ Windows XP ซึ่งจะประกอบด้วย
เมนู (Menu) สำหรับเปิดเมนูย่อยหรือเรียกใช้โปรแกรมของระบบ Windows XP
เมนูย่อย (Submenu) สำหรับเปิดเมนูย่อยหรือเรียกใช้โปแกรมต่าง ๆ ที่ติดตั้งไว้
การใช้งานโปรแกรม
การเรียกใช้งานต่างๆ ที่อยู่ในเครื่อง ให้คลิกที่ปุ่ม Start แล้วเลื่อนเมาส์ไปที่ All Programs จะปรากฏโปรแกรมที่มีอยู่ในเครื่องดังภาพข้างล่าง
หน้าต่าง (Windows)
1. ไตเติลบาร์ (Title bar) แสดงชื่อของโปรแกรมที่ใช้งานอยู่
2. เมนูบาร์ (Menu Bar) แสดงเมนูของโปรแกรมใช้ในการเลือกคำสั่ง
3. แถบเครื่องมือ (Toolbar) เป็นรูปภาพเล็ก ๆ แทนคำสั่งใช้งานต่าง ๆ
4. แถบตำแหน่ง (Addressbar) แสดงตำแหน่ง ณ ขณะนั้น
5. มินิไมซ์ (minimize) ปุ่มลดขนาดหน้าต่างหรือปิดหน้าต่าง
6. แมกซิไมซ์ (Maximize) ขยายหน้าต่างให้เต็มจอ
7. ปุ่มปิดโปแกรม (Close) ใช้ในการปิดโปรแกรม
8. ไอคอน (Icon) คือ รูปสัญลักษณ์ที่ใช้เรียกโปรแกรม
9. แถบเลื่อน (Scroll Bar) ใช้ในการเลื่อนหน้าจอไปซ้าย ขวา ขึ้นลงตามทิศทางลูกศร
10. แถบสถานะ (Status Bar) แสดงสถานะการทำงาน
ส.11 เรื่อง CPU
ซีพียู
ซีพียู (CPU)• ซีพียู (CPU : Central Processing Unit) หรือหน่วยประมวลผลกลาง เป็นส่วนประกอบหลัก ซึ่งทำหน้าที่ คิด คำนวณ และประมวลผลข้อมูลต่างๆ ทั้งการคำนวณตัวเลขทางด้านคณิตศาสตร์ (Arithmetic Operation) บวก ลบ คูณ หาร หรือการคำนวณเชิงเปรียบเทียบข้อมูลทางด้านตรรกศาสตร์ (Logical Operation) มากกว่า น้อยกว่า เท่ากับ เมื่อคอมพิวเตอร์มีการรับข้อมูลใดๆ เข้ามาจัดเก็บ หรือพักไว้ในหน่วยความจำแล้วก็จะถูกส่งต่อให้ซีพียูประมวลผลก่อนเสมอความเร็วของซีพียูØ ตารางเรียกหน่วยวัด (คูณ) Ø Kilo K x1 milli Ø Mega M x1,000,000 micro Ø Giga G x1,000,000,000 Ø Tera T x1,000,000,000,000Ø ตารางเรียกหน่วยวัด (หาร)Ø m 1/1000Ø µ 1/1000,000Ø nano n 1/1000,000,000Ø pico p 1/1,000,000,000,000ความเร็ว Front Side Bus (FSB)• ความเร็วของสัญญาณนาฬิกาที่ให้จังหวะในการทำงานแต่ FSB หากแต่เป็นความเร็วสุทธิ (effective bus speed) ที่เป็นผลมาจากการรับส่งข้อมูลมากกว่า 1 ครั้ง• ในขณะที่ซีพียูของ Intel จะใช้ความเร็ว FSB ประกอบกับเทคนิคที่เรียกว่า Quad-Pumped เพื่อช่วยให้สามารถรับส่งข้อมูลได้มากถึง 4 ครั้งในแต่ละลูกคลื่น• ซีพียูของ AMD จะใช้เทคโนโลยีในการรับส่งข้อมูลความเร็วสูงแบบ Hyper Transport ควบคู่ไปกับการทำงานของส่วนควบคุมหน่วยความจำ (Integrated Memory Controller) ภายในซีพียู เข้ามาทำงานแทน FSB พร้อมๆ ไปกับการใช้เทคนิคที่เรียกว่า Double Data Rate (DDR)• ปัจจุบันความเร็ว FSB จะอยู่ที่ 133 ถึง 400 MHz ขึ้นกับซีพียูและชิปเซ็ตที่ใช้ แต่บางครั้งอาจมีการบอกเป็นความเร็ว FSB ที่สูงกว่านี้ เช่น 667, 800, 1066, 1333 และ 1600 MHzระบบบัส HyperTransport มาตรฐาน 1.x, 2.0, 3.0 และ 3.1o · HyperTransport 1.x (1.0x และ 1.1) เป็นมาตรฐานในยุคแรก ซึ่งสนับสนุนความเร็วสูงสุดที่ 800 MHz (ความเร็วสุทธิ 1600 MHz DDR)o · HyperTransport 2.0 เป็นมาตรฐานในยุคต่อมา ซึ่งสนับสนุนความเร็วที่ 1.0, 1.2 และ 1.4 GHz ที่ความเร็วสูงสุด 1.4 GHz (ความเร็วสุทธิ 2.8 GHz DDR) o · HyperTransport 3.1 เป็นมาตรฐานล่าสุด ซึ่งสนับสนุนความเร็วที่ 2.8, 3.0, และ 3.2 GHz ที่ความเร็วสูงสุด 3.2 GHz (ความเร็วสุทธิ 6.4 GHz DDR) o · HyperTransport 3.0 เป็นมาตรฐานที่ใช้กันแพร่หลายในซีพียู AMD ซึ่งสนับสนุนความเร็วที่ 1.8, 2.0, 2.4 และ 2.6 GHz ที่ความเร็วสูงสุด 2.6 GHz (ความเร็วสุทธิ 5.2 GHz DDR)หน่วยความจำแคช (Cache Memory)l หน่วยความจำแคช (Cache Memory) จะทำหน้าที่เสมือนเป็นกระดาษช่วยจำคอยจดบันทึกข้อมูลหรือคำสั่งต่างๆ ที่ซีพียูมักมีการเรียกใช้งานซ้ำๆ บ่อยๆ ไว้ชั่วคราว เพื่อช่วยลดภาระในการติดต่อหรือเข้าถึงข้อมูลภายในแรม (RAM)l · L1 Cache ตำแหน่งจะอยู่ชิดติดกับหน่วยประมวลผลภายในซีพียู และมีความเร็วในการทำงานเทียบเท่าซีพียู มีขนาดตั้งแต่ 8 KB ไปจนถึง 128 KB l · L2 Cache ตำแหน่งจะอยู่ถัดออกมาจาก L1 ใช้เก็บข้อมูลรองจาก L1 โดยถ้าซีพียูเรียกหาl มีขนาดความจุที่ใหญ่กว่า คือ ขนาดตั้งแต่ 64 KB ไปจนถึง 8 MB เลยทีเดียวซีพียู Pentium Extreme Editionu เป็น Dual-Core ภายใต้แบรนด์ Pentium ในตระกูล Extreme Edition ที่ถูกออกแบบมาสำหรับคอมพิวเตอร์ระดับ Hi-End สมรรถนะสูง เหมาะกับการสร้างสรรค์สื่อบันเทิงต่างๆอย่างเต็มรูปแบบ ทั้งการประมวลผลภาพวิดีโอ และระบบเสียงแบบ High Definition ทั้งงานด้านออกแบบและเกมส์ต่างๆ โดยเป็นผมมาจากการทำงานร่วมกันระหว่างสถาปัตยกรรมแบบ Dual-Core กับเทคโนโลยี Hyper-Threading ที่ช่วยให้สามารถประมวลผลได้ถึงคราวละ 4 Threads ในเวลาเดียวกันซีพียู Core 2n Core 2 Duo (Allendale-65 nm)เป็น Dual-Core สำหรับ Core 2 บนสถาปัตยกรรม Core Microarchitecture ผลิตด้วยเทคโนโลยีขนาด 65 nm ใช้รหัส Processor Number E4xxx ความเร็วสูงสุด 2.6 GHzn Core 2 Duo (Conroe-65 nm)เป็น Dual-Core สำหรับ Core ผลิตด้วยเทคโนโลยีขนาด 65 nm ใช้รหัส Processor Number E6xxx ความเร็วสูงสุด 3.0 GHzn Core 2 Duo (Wolfdale 3M-45 nm)เป็น Dual-Core (Wolfdale 45 nm) ที่ได้ปรับลดขนาด L2 Cache ลงเหลือเพียง 3 MB (แต่ละคอร์ใช้งานร่วมกัน) ผลิตด้วยเทคโนโลยีขนาด 45 nm ใช้รหัส Processor Number E7xxx ความเร็วสูงสุด 2.8 GHzCore 2 Duo (Wolfdale 45 nm)เป็น Dual-Core ที่ผลิตด้วยเทคโนโลยีขนาด 45 nm ใช้รหัส Processor Number E8xxx ความเร็วสูงสุด 3.3 GHz ในรุ่น E8600ใช้ FSB 1333 MHz มี L2 Cache ขนาด 6 MB (แต่ละคอร์ใช้งานร่วมกัน)Core 2 Extreme (Dual-Core)เป็น Core 2 Extreme บนสถาปัตยกรรม Core Microarchitecture ผลิตด้วยเทคโนโลยีขนาด 65 nm ใช้รหัส Processor Number X6xxx ความเร็ว 2.93 GHzCore 2 Quad (Kentsfield -65 nm)เป็น Core - Quad (ภายในเสมือนมีซีพียู Core 2 Duoรหัส Conroe อยู่ 2 ตัว รวมเป็น 4 คอร์)ในตระกูล Core 2 บนสถาปัตยกรรม Core Microarchitecture ผลิตด้วยเทคโนโลยีขนาด 65 nm ใช้รหัส Processor Number Q6xxx ความเร็ว 2.66 GHzCore 2 Duo (Wolfdale 45 nm)เป็น Dual-Core ที่ผลิตด้วยเทคโนโลยีขนาด 45 nm ใช้รหัส Processor Number E8xxx ความเร็วสูงสุด 3.3 GHz ในรุ่น E8600ใช้ FSB 1333 MHz มี L2 Cache ขนาด 6 MB (แต่ละคอร์ใช้งานร่วมกัน)Core 2 Extreme (Dual-Core)เป็น Core 2 Extreme บนสถาปัตยกรรม Core Microarchitecture ผลิตด้วยเทคโนโลยีขนาด 65 nm ใช้รหัส Processor Number X6xxx ความเร็ว 2.93 GHzCore 2 Quad (Kentsfield -65 nm)เป็น Core - Quad (ภายในเสมือนมีซีพียู Core 2 Duoรหัส Conroe อยู่ 2 ตัว รวมเป็น 4 คอร์)ในตระกูล Core 2 บนสถาปัตยกรรม Core Microarchitecture ผลิตด้วยเทคโนโลยีขนาด 65 nm ใช้รหัส Processor Number Q6xxx ความเร็ว 2.66 GHzบรรจุภัณฑ์ (Packaging) และฐานรอง (Socket)u แบบ BGA (Ball Grid Array)บรรจุภัณฑ์แบบมีจะมีลักษณะเป็นแผ่นแบนๆที่ด้านหนึ่งจะมีวัสดุทรงกลมนำไฟฟ้าขนาดเล็กเรียงตัวอย่างเป็นระเบียบทำหน้าที่เป็นขาของชิปu แบบตลับ (Cartridge)บรรจุภัณฑ์แบบนี้เรียกกันโดยทั่วไปว่า SECC (Single Edge Connector Cartridge) มักถูกนำไปใช้กับซีพียูรุ่นเก่า โดยใช้เสียบลงบนสล็อตบนเมนบอร์ดu แบบPGA (Pin Grid Array) บรรจุภัณฑ์แบบนี้เป็นที่นิยมใช้กันมานานแล้ว และได้ถูกแบ่งออกเป็นชนิดต่างๆมากมาย เช่น PPGA OmPGAและ FC-PGAu แบบ LGA (Land Grid Array)เป็นบรรจุภัณฑ์ล่าสุดที่ Intel นำมาใช้กับซีพียูใหม่ๆทุกรุ่นรวมถึงรุ่นใหญ่ของ AMD อย่าง Athlon 64 Quad FX, Phenom FX และ Opteronเทคโนโลยี High-K ในกระบวนการผลิตซีพียูในกระบวนการผลิต 45nm ของซีพียู Intel เป็นการปฏิวัติโครงสร้างภายในสารกึ่งตัวนำที่ใช้ทำทรานซิสเตอร์เสียใหม่ จากเดิมที่ใช้ Polysilicon Gate (NMOS + PMOS) มาเป็น Metal Gate และเปลี่ยน Dielectrics Gate มาเป็น High-K Gate Oxide ที่ใช้ Hafnium เป็นวัสดุ ซึ่งมีค่าคงไดอิเล็กตริกสัมพัทธ์ที่สูง ช่วยให้สามารถลดการรั่วไหลของอิเล็กตรอนได้เป็นอย่างดี อีกทั้งยังช่วยลดการใช้พลังงานลงได้มากซีพียู Intelอินเทล (Intel Corporation) เป็นบริษัทผู้ผลิตซีพียูเก่าแก่และมีการพัฒนา มาอย่างต่อเนื่อง นับตั้งแต่ซีพียู 8086,8088 และซีพียูในตระกูล 80x86 เรื่อยมารวมทั้งซีพียูบนโครงสร้างสถาปัตยกรรมแบบใหม่อย่าง Nehalem ที่จะมาพร้อมกับแบรนด์ใหม่ในชื่อว่า Core i7ซีพียู Celeron D และ Celeron Dual-Core• Celeron D (Prescott-90 nm)เป็นการนำเอา Pentium 4 (Prescott-90 nm) บนสถาปัตกรรม NetBurst มาลดขนาด L2 Cache ลงจากเดิม 1 MB ให้เหลือเพียง 256 KB ความเร็วสูงสุดปัจจุบันอยู่ที่ 3.33 GHz• Celeron D (Cedar Mill-65 nm)เป็นการนำเอา Pentium 4 (Cedar Mill-65 nm) บนสถาปัตกรรม NetBurst มาลดขนาด L2 Cache ลงจากเดิม 2 MB ให้เหลือเพียง 512 KB • Celeron D (Conroe-L/65 nm)เป็น Celeron D รุ่นแรกบนสถาปัตยกรรม Core Microarchitecture (เช่นเดียวกับ Core 2 Duo) ผลิตด้วยเทคโนโลยีขนาด 0.065 ไมครอน หรือ 65 nmn Celeron Dual-Core (Allendale-65 nm)เป็น Celeron แบบ Dual-Core บนสถาปัตยกรรม Core Microarchitecture ผลิตด้วยเทคโนโลยีขนาด 65 nmn Celeron Dual-Core (Merom 2M-65 nm) สำหรับ Notebookเป็น Celeron Dual-Core สำหรับ Notebook บนสถาปัตยกรรม Core Microarchitecture ผลิตด้วยเทคโนโลยีขนาด 65 nmชุดคำสั่ง MMX, SSE (Streaming SIMD Extensions), SSE2, SSE3 และ SSE4n MMX เป็นชุดคำสั่ง 57 คำสั่งสำหรับงานมัลติมีเดียที่ถูกเพิ่มเข้ามาในซีพียูส่วน SSE เป็นชุดคำสั่งที่ถูกเพิ่มเข้ามาอีก 70 คำสั่ง จากนั้นก็พัฒนาต่อมาเป็น SSE2 โดยเพิ่มชุดคำสั่งเข้าไปอีก 144 คำสั่ง รวมถึงเทคนิคในการประมวลผลแบบ SIMD (Single Instruction Multiple Data)ผลลัพธ์ก็คือความสามารถในการจัดการกับข้อมูลขนาดใหญ่ให้เสร็จได้ภายในระยะเวลาอันรวดเร็วไป และล่าสุด SSE4 ที่พัฒนามาจากเทคโนโลยี Advanced Digital Media Boost ของ Intel (เพิ่มเติมชุดคำสั่งเข้าไปอีก 47 คำสั่ง)SSE3 ก็ได้เพิ่มเติมชุดคำสั่งพิเศษ PNl (Prescott New Instructions) เข้าไปอีก 13 คำสั่งซีพียู Pentium 4ซีพียูในตระกูล Pentium 4 ได้ถูกเพิ่มเติมเทคโนโลยี Hyper-Threading (HT) เข้าไปเพื่อช่วยให้สามารถประมวลผลเธรดหรือชุดคำสั่งย่อยต่างๆ ไปพร้อมๆ กันได้เสมือนซีพียู 2 ตัวช่วยกันทำงาน ซึ่งทำให้เพิ่มประสิทธิภาพของการทำงานในแบบ Multitasking หรือการทำงานหลายๆ อย่างพร้อมกันได้ดียิ่งขึ้นIntel Virtualization Technology (VT)n เป็นเทคโนโลยีที่ช่วยให้ระบบสามารถจำลองสภาพแวดล้อมเสมือนขึ้นมา เพื่อช่วยให้คอมพิวเตอร์สามารถทำงานกับหลายๆ ระบบปฏิบัติการได้พร้อมๆ กัน โดยไม่รบกวนกันเสมือนหนึ่งว่าเป็นคนละเครื่องกันซีพียู Pentium D• นับเป็นก้าวแรกสู่ยุค Dual & Muti-Core ของ Intel โดย Pentium D ถูกออกแบบมา เพื่อการทำงานที่ต้องการใช้การ Multitasking สูงๆ หรือสามารถทำงานกับแอพพลิเคชั่นได้หลายตัวพร้อมกันอย่างมีประสิทธิภาพ เช่น การตัดต่อวีดีโอในระหว่างดาวน์โหลดเพลงไปด้วยและการสร้างงานด้านกราฟิกที่จะต้องใช้โปรแกรมหลายตัวไปพร้อมๆ กันการประมวลผลของซีพียูที่มีโครงสร้างแบบ Dual-Core และ Double-Core· (ซ้าย) Pentium D (Smithfield-0.09 ไมครอน) ซึ่งมีโครงสร้างแบบ Dual-Core จะประมวลผลข้อมูลที่รับเข้ามาและส่งออกไปพร้อมกันจากทั้ง 2 Core· (ขวา) Pentium D (Presler-0.065 ไมครอน) ซึ่งมีโครงสร้างแบบ Double-Core (Die ถูกแยกออกเป็น 2 ส่วน ทำงานอิสระจากกัน) หรือกลุ่มของโครงสร้างแบบ Multi-Chip จะประมวลผลข้อมูลที่รับ เข้ามาและส่งออกไปแบบตัวใครตัวมัน ซึ่งทำให้ประสิทธิภาพของการประมวลผลที่ดีกว่าซีพียู Pentium Dual-CorePentium Dual-Core (Allendale-65 nm)เป็น Dual-Core ภายใต้แบรนด์ Pentium รุ่นแรก บนสถาปัตยกรรม Core Microarchitecture ที่ใช้กับ Core 2 DuoPentium Dual-Core (Wolfdale 2M-45 nm)เป็น Pentium Dual-Core บนสถาปัตยกรรม Core Microarchitecture รุ่นต่อมา โดยการนำ Core 2 Duo (Wolfdale-45 nm) มาปรับลดขนาด L2 Cache ลงเหลือเพียง 2 MB
ซีพียู (CPU)• ซีพียู (CPU : Central Processing Unit) หรือหน่วยประมวลผลกลาง เป็นส่วนประกอบหลัก ซึ่งทำหน้าที่ คิด คำนวณ และประมวลผลข้อมูลต่างๆ ทั้งการคำนวณตัวเลขทางด้านคณิตศาสตร์ (Arithmetic Operation) บวก ลบ คูณ หาร หรือการคำนวณเชิงเปรียบเทียบข้อมูลทางด้านตรรกศาสตร์ (Logical Operation) มากกว่า น้อยกว่า เท่ากับ เมื่อคอมพิวเตอร์มีการรับข้อมูลใดๆ เข้ามาจัดเก็บ หรือพักไว้ในหน่วยความจำแล้วก็จะถูกส่งต่อให้ซีพียูประมวลผลก่อนเสมอความเร็วของซีพียูØ ตารางเรียกหน่วยวัด (คูณ) Ø Kilo K x1 milli Ø Mega M x1,000,000 micro Ø Giga G x1,000,000,000 Ø Tera T x1,000,000,000,000Ø ตารางเรียกหน่วยวัด (หาร)Ø m 1/1000Ø µ 1/1000,000Ø nano n 1/1000,000,000Ø pico p 1/1,000,000,000,000ความเร็ว Front Side Bus (FSB)• ความเร็วของสัญญาณนาฬิกาที่ให้จังหวะในการทำงานแต่ FSB หากแต่เป็นความเร็วสุทธิ (effective bus speed) ที่เป็นผลมาจากการรับส่งข้อมูลมากกว่า 1 ครั้ง• ในขณะที่ซีพียูของ Intel จะใช้ความเร็ว FSB ประกอบกับเทคนิคที่เรียกว่า Quad-Pumped เพื่อช่วยให้สามารถรับส่งข้อมูลได้มากถึง 4 ครั้งในแต่ละลูกคลื่น• ซีพียูของ AMD จะใช้เทคโนโลยีในการรับส่งข้อมูลความเร็วสูงแบบ Hyper Transport ควบคู่ไปกับการทำงานของส่วนควบคุมหน่วยความจำ (Integrated Memory Controller) ภายในซีพียู เข้ามาทำงานแทน FSB พร้อมๆ ไปกับการใช้เทคนิคที่เรียกว่า Double Data Rate (DDR)• ปัจจุบันความเร็ว FSB จะอยู่ที่ 133 ถึง 400 MHz ขึ้นกับซีพียูและชิปเซ็ตที่ใช้ แต่บางครั้งอาจมีการบอกเป็นความเร็ว FSB ที่สูงกว่านี้ เช่น 667, 800, 1066, 1333 และ 1600 MHzระบบบัส HyperTransport มาตรฐาน 1.x, 2.0, 3.0 และ 3.1o · HyperTransport 1.x (1.0x และ 1.1) เป็นมาตรฐานในยุคแรก ซึ่งสนับสนุนความเร็วสูงสุดที่ 800 MHz (ความเร็วสุทธิ 1600 MHz DDR)o · HyperTransport 2.0 เป็นมาตรฐานในยุคต่อมา ซึ่งสนับสนุนความเร็วที่ 1.0, 1.2 และ 1.4 GHz ที่ความเร็วสูงสุด 1.4 GHz (ความเร็วสุทธิ 2.8 GHz DDR) o · HyperTransport 3.1 เป็นมาตรฐานล่าสุด ซึ่งสนับสนุนความเร็วที่ 2.8, 3.0, และ 3.2 GHz ที่ความเร็วสูงสุด 3.2 GHz (ความเร็วสุทธิ 6.4 GHz DDR) o · HyperTransport 3.0 เป็นมาตรฐานที่ใช้กันแพร่หลายในซีพียู AMD ซึ่งสนับสนุนความเร็วที่ 1.8, 2.0, 2.4 และ 2.6 GHz ที่ความเร็วสูงสุด 2.6 GHz (ความเร็วสุทธิ 5.2 GHz DDR)หน่วยความจำแคช (Cache Memory)l หน่วยความจำแคช (Cache Memory) จะทำหน้าที่เสมือนเป็นกระดาษช่วยจำคอยจดบันทึกข้อมูลหรือคำสั่งต่างๆ ที่ซีพียูมักมีการเรียกใช้งานซ้ำๆ บ่อยๆ ไว้ชั่วคราว เพื่อช่วยลดภาระในการติดต่อหรือเข้าถึงข้อมูลภายในแรม (RAM)l · L1 Cache ตำแหน่งจะอยู่ชิดติดกับหน่วยประมวลผลภายในซีพียู และมีความเร็วในการทำงานเทียบเท่าซีพียู มีขนาดตั้งแต่ 8 KB ไปจนถึง 128 KB l · L2 Cache ตำแหน่งจะอยู่ถัดออกมาจาก L1 ใช้เก็บข้อมูลรองจาก L1 โดยถ้าซีพียูเรียกหาl มีขนาดความจุที่ใหญ่กว่า คือ ขนาดตั้งแต่ 64 KB ไปจนถึง 8 MB เลยทีเดียวซีพียู Pentium Extreme Editionu เป็น Dual-Core ภายใต้แบรนด์ Pentium ในตระกูล Extreme Edition ที่ถูกออกแบบมาสำหรับคอมพิวเตอร์ระดับ Hi-End สมรรถนะสูง เหมาะกับการสร้างสรรค์สื่อบันเทิงต่างๆอย่างเต็มรูปแบบ ทั้งการประมวลผลภาพวิดีโอ และระบบเสียงแบบ High Definition ทั้งงานด้านออกแบบและเกมส์ต่างๆ โดยเป็นผมมาจากการทำงานร่วมกันระหว่างสถาปัตยกรรมแบบ Dual-Core กับเทคโนโลยี Hyper-Threading ที่ช่วยให้สามารถประมวลผลได้ถึงคราวละ 4 Threads ในเวลาเดียวกันซีพียู Core 2n Core 2 Duo (Allendale-65 nm)เป็น Dual-Core สำหรับ Core 2 บนสถาปัตยกรรม Core Microarchitecture ผลิตด้วยเทคโนโลยีขนาด 65 nm ใช้รหัส Processor Number E4xxx ความเร็วสูงสุด 2.6 GHzn Core 2 Duo (Conroe-65 nm)เป็น Dual-Core สำหรับ Core ผลิตด้วยเทคโนโลยีขนาด 65 nm ใช้รหัส Processor Number E6xxx ความเร็วสูงสุด 3.0 GHzn Core 2 Duo (Wolfdale 3M-45 nm)เป็น Dual-Core (Wolfdale 45 nm) ที่ได้ปรับลดขนาด L2 Cache ลงเหลือเพียง 3 MB (แต่ละคอร์ใช้งานร่วมกัน) ผลิตด้วยเทคโนโลยีขนาด 45 nm ใช้รหัส Processor Number E7xxx ความเร็วสูงสุด 2.8 GHzCore 2 Duo (Wolfdale 45 nm)เป็น Dual-Core ที่ผลิตด้วยเทคโนโลยีขนาด 45 nm ใช้รหัส Processor Number E8xxx ความเร็วสูงสุด 3.3 GHz ในรุ่น E8600ใช้ FSB 1333 MHz มี L2 Cache ขนาด 6 MB (แต่ละคอร์ใช้งานร่วมกัน)Core 2 Extreme (Dual-Core)เป็น Core 2 Extreme บนสถาปัตยกรรม Core Microarchitecture ผลิตด้วยเทคโนโลยีขนาด 65 nm ใช้รหัส Processor Number X6xxx ความเร็ว 2.93 GHzCore 2 Quad (Kentsfield -65 nm)เป็น Core - Quad (ภายในเสมือนมีซีพียู Core 2 Duoรหัส Conroe อยู่ 2 ตัว รวมเป็น 4 คอร์)ในตระกูล Core 2 บนสถาปัตยกรรม Core Microarchitecture ผลิตด้วยเทคโนโลยีขนาด 65 nm ใช้รหัส Processor Number Q6xxx ความเร็ว 2.66 GHzCore 2 Duo (Wolfdale 45 nm)เป็น Dual-Core ที่ผลิตด้วยเทคโนโลยีขนาด 45 nm ใช้รหัส Processor Number E8xxx ความเร็วสูงสุด 3.3 GHz ในรุ่น E8600ใช้ FSB 1333 MHz มี L2 Cache ขนาด 6 MB (แต่ละคอร์ใช้งานร่วมกัน)Core 2 Extreme (Dual-Core)เป็น Core 2 Extreme บนสถาปัตยกรรม Core Microarchitecture ผลิตด้วยเทคโนโลยีขนาด 65 nm ใช้รหัส Processor Number X6xxx ความเร็ว 2.93 GHzCore 2 Quad (Kentsfield -65 nm)เป็น Core - Quad (ภายในเสมือนมีซีพียู Core 2 Duoรหัส Conroe อยู่ 2 ตัว รวมเป็น 4 คอร์)ในตระกูล Core 2 บนสถาปัตยกรรม Core Microarchitecture ผลิตด้วยเทคโนโลยีขนาด 65 nm ใช้รหัส Processor Number Q6xxx ความเร็ว 2.66 GHzบรรจุภัณฑ์ (Packaging) และฐานรอง (Socket)u แบบ BGA (Ball Grid Array)บรรจุภัณฑ์แบบมีจะมีลักษณะเป็นแผ่นแบนๆที่ด้านหนึ่งจะมีวัสดุทรงกลมนำไฟฟ้าขนาดเล็กเรียงตัวอย่างเป็นระเบียบทำหน้าที่เป็นขาของชิปu แบบตลับ (Cartridge)บรรจุภัณฑ์แบบนี้เรียกกันโดยทั่วไปว่า SECC (Single Edge Connector Cartridge) มักถูกนำไปใช้กับซีพียูรุ่นเก่า โดยใช้เสียบลงบนสล็อตบนเมนบอร์ดu แบบPGA (Pin Grid Array) บรรจุภัณฑ์แบบนี้เป็นที่นิยมใช้กันมานานแล้ว และได้ถูกแบ่งออกเป็นชนิดต่างๆมากมาย เช่น PPGA OmPGAและ FC-PGAu แบบ LGA (Land Grid Array)เป็นบรรจุภัณฑ์ล่าสุดที่ Intel นำมาใช้กับซีพียูใหม่ๆทุกรุ่นรวมถึงรุ่นใหญ่ของ AMD อย่าง Athlon 64 Quad FX, Phenom FX และ Opteronเทคโนโลยี High-K ในกระบวนการผลิตซีพียูในกระบวนการผลิต 45nm ของซีพียู Intel เป็นการปฏิวัติโครงสร้างภายในสารกึ่งตัวนำที่ใช้ทำทรานซิสเตอร์เสียใหม่ จากเดิมที่ใช้ Polysilicon Gate (NMOS + PMOS) มาเป็น Metal Gate และเปลี่ยน Dielectrics Gate มาเป็น High-K Gate Oxide ที่ใช้ Hafnium เป็นวัสดุ ซึ่งมีค่าคงไดอิเล็กตริกสัมพัทธ์ที่สูง ช่วยให้สามารถลดการรั่วไหลของอิเล็กตรอนได้เป็นอย่างดี อีกทั้งยังช่วยลดการใช้พลังงานลงได้มากซีพียู Intelอินเทล (Intel Corporation) เป็นบริษัทผู้ผลิตซีพียูเก่าแก่และมีการพัฒนา มาอย่างต่อเนื่อง นับตั้งแต่ซีพียู 8086,8088 และซีพียูในตระกูล 80x86 เรื่อยมารวมทั้งซีพียูบนโครงสร้างสถาปัตยกรรมแบบใหม่อย่าง Nehalem ที่จะมาพร้อมกับแบรนด์ใหม่ในชื่อว่า Core i7ซีพียู Celeron D และ Celeron Dual-Core• Celeron D (Prescott-90 nm)เป็นการนำเอา Pentium 4 (Prescott-90 nm) บนสถาปัตกรรม NetBurst มาลดขนาด L2 Cache ลงจากเดิม 1 MB ให้เหลือเพียง 256 KB ความเร็วสูงสุดปัจจุบันอยู่ที่ 3.33 GHz• Celeron D (Cedar Mill-65 nm)เป็นการนำเอา Pentium 4 (Cedar Mill-65 nm) บนสถาปัตกรรม NetBurst มาลดขนาด L2 Cache ลงจากเดิม 2 MB ให้เหลือเพียง 512 KB • Celeron D (Conroe-L/65 nm)เป็น Celeron D รุ่นแรกบนสถาปัตยกรรม Core Microarchitecture (เช่นเดียวกับ Core 2 Duo) ผลิตด้วยเทคโนโลยีขนาด 0.065 ไมครอน หรือ 65 nmn Celeron Dual-Core (Allendale-65 nm)เป็น Celeron แบบ Dual-Core บนสถาปัตยกรรม Core Microarchitecture ผลิตด้วยเทคโนโลยีขนาด 65 nmn Celeron Dual-Core (Merom 2M-65 nm) สำหรับ Notebookเป็น Celeron Dual-Core สำหรับ Notebook บนสถาปัตยกรรม Core Microarchitecture ผลิตด้วยเทคโนโลยีขนาด 65 nmชุดคำสั่ง MMX, SSE (Streaming SIMD Extensions), SSE2, SSE3 และ SSE4n MMX เป็นชุดคำสั่ง 57 คำสั่งสำหรับงานมัลติมีเดียที่ถูกเพิ่มเข้ามาในซีพียูส่วน SSE เป็นชุดคำสั่งที่ถูกเพิ่มเข้ามาอีก 70 คำสั่ง จากนั้นก็พัฒนาต่อมาเป็น SSE2 โดยเพิ่มชุดคำสั่งเข้าไปอีก 144 คำสั่ง รวมถึงเทคนิคในการประมวลผลแบบ SIMD (Single Instruction Multiple Data)ผลลัพธ์ก็คือความสามารถในการจัดการกับข้อมูลขนาดใหญ่ให้เสร็จได้ภายในระยะเวลาอันรวดเร็วไป และล่าสุด SSE4 ที่พัฒนามาจากเทคโนโลยี Advanced Digital Media Boost ของ Intel (เพิ่มเติมชุดคำสั่งเข้าไปอีก 47 คำสั่ง)SSE3 ก็ได้เพิ่มเติมชุดคำสั่งพิเศษ PNl (Prescott New Instructions) เข้าไปอีก 13 คำสั่งซีพียู Pentium 4ซีพียูในตระกูล Pentium 4 ได้ถูกเพิ่มเติมเทคโนโลยี Hyper-Threading (HT) เข้าไปเพื่อช่วยให้สามารถประมวลผลเธรดหรือชุดคำสั่งย่อยต่างๆ ไปพร้อมๆ กันได้เสมือนซีพียู 2 ตัวช่วยกันทำงาน ซึ่งทำให้เพิ่มประสิทธิภาพของการทำงานในแบบ Multitasking หรือการทำงานหลายๆ อย่างพร้อมกันได้ดียิ่งขึ้นIntel Virtualization Technology (VT)n เป็นเทคโนโลยีที่ช่วยให้ระบบสามารถจำลองสภาพแวดล้อมเสมือนขึ้นมา เพื่อช่วยให้คอมพิวเตอร์สามารถทำงานกับหลายๆ ระบบปฏิบัติการได้พร้อมๆ กัน โดยไม่รบกวนกันเสมือนหนึ่งว่าเป็นคนละเครื่องกันซีพียู Pentium D• นับเป็นก้าวแรกสู่ยุค Dual & Muti-Core ของ Intel โดย Pentium D ถูกออกแบบมา เพื่อการทำงานที่ต้องการใช้การ Multitasking สูงๆ หรือสามารถทำงานกับแอพพลิเคชั่นได้หลายตัวพร้อมกันอย่างมีประสิทธิภาพ เช่น การตัดต่อวีดีโอในระหว่างดาวน์โหลดเพลงไปด้วยและการสร้างงานด้านกราฟิกที่จะต้องใช้โปรแกรมหลายตัวไปพร้อมๆ กันการประมวลผลของซีพียูที่มีโครงสร้างแบบ Dual-Core และ Double-Core· (ซ้าย) Pentium D (Smithfield-0.09 ไมครอน) ซึ่งมีโครงสร้างแบบ Dual-Core จะประมวลผลข้อมูลที่รับเข้ามาและส่งออกไปพร้อมกันจากทั้ง 2 Core· (ขวา) Pentium D (Presler-0.065 ไมครอน) ซึ่งมีโครงสร้างแบบ Double-Core (Die ถูกแยกออกเป็น 2 ส่วน ทำงานอิสระจากกัน) หรือกลุ่มของโครงสร้างแบบ Multi-Chip จะประมวลผลข้อมูลที่รับ เข้ามาและส่งออกไปแบบตัวใครตัวมัน ซึ่งทำให้ประสิทธิภาพของการประมวลผลที่ดีกว่าซีพียู Pentium Dual-CorePentium Dual-Core (Allendale-65 nm)เป็น Dual-Core ภายใต้แบรนด์ Pentium รุ่นแรก บนสถาปัตยกรรม Core Microarchitecture ที่ใช้กับ Core 2 DuoPentium Dual-Core (Wolfdale 2M-45 nm)เป็น Pentium Dual-Core บนสถาปัตยกรรม Core Microarchitecture รุ่นต่อมา โดยการนำ Core 2 Duo (Wolfdale-45 nm) มาปรับลดขนาด L2 Cache ลงเหลือเพียง 2 MB
ส.10 เรื่อง harddisk
Hard Disk
ฮาร์ดดิสก์ที่มีกลไกแบบปัจจุบันถูกประดิษฐ์ขึ้นเมื่อ พ.ศ. 2499 (1956) โดยนักประดิษฐ์ยุคบุกเบิกแห่งบริษัทไอบีเอ็ม เรย์โนล์ด จอห์นสัน ซึ่งในขณะนั้น ฮาร์ดดิสก์มีขนาดค่อนข้างใหญ่ มีเส้นผ่าศูนย์กลางถึง 20 นิ้ว มีความจุเพียงระดับเมกะไบต์เท่านั้น «โดยใช้หน่วยการเปรียบเทียบเป็น บระดับจิกะไบต์ในปัจจุบัน ซึ่ง 1,024MB = 1GB» ในตอนแรกใช้ชื่อเรียกว่า 'ฟิกส์ดิสก์ fixed disk หรือจานบันทึกที่ติดอยู่กับที่ ในบริษัท IBM เรียกว่า วินเชสเตอร์ส Winchestersต่อมาภายหลังจึงเรียกว่า ฮาร์ดดิสก์ จานบันทึกแบบแข็ง เพื่อจำแนกประเภทออกจาก ฟลอปปี้ดิสก์ จานบันทึกแบบอ่อนตั้งแต่เข้าสู่ช่วงคริสต์ศตวรรษที่ 21 เป็นต้นมา ฮาร์ดดิสก์สามารถพบได้ในอุปกรณ์อิเล็กทรอนิกส์ทั่วไป ไม่เฉพาะภายในคอมพิวเตอร์ทุกเครื่องเท่านั้น แต่ยังรวมไปถึงอุปกรณ์อิเล็กทรอนิกส์อื่นๆ อีกด้วย เช่น เครื่องเล่นเอ็มพีทรี, เครื่องบันทึกภาพดิจิทัล, กล้องถ่ายรูป, คอมพิวเตอร์ขนาดพกพา PDA จนกระทั่งภายใน โทรศัพท์มือถือ บางรุ่นตั้งแต่ภายในปี พ.ศ. 2548 เป็นต้นมาเช่นยี่ห้อ (โนเกีย และ ซัมซุง สองบริษัทผู้ผลิตโทรศัพท์มือถือรายแรกที่จำหน่ายโทรศัพท์มือถือที่มีฮาร์ดดิสก์
ขนาดและความจุ
ความจุของฮาร์ดดิสก์โดยทั่วไปในปัจจุบันนั้นมีตั้งแต่ 20 จิกะไบต์ ถึง 1.5 เทระไบต์ขนาดความหนา 8 inch: 9.5 นิ้ว×4.624 นิ้ว×14.25 นิ้ว (241.3 มิลลิเมตร×117.5 มิลลิเมตร×362 มิลลิเมตร)ขนาดความหนา 5.25 inch: 5.75 นิ้ว×1.63 นิ้ว×8 นิ้ว (146.1 มิลลิเมตร×41.4 มิลลิเมตร×203 มิลลิเมตร)
ปัจจุบันภายในปี 2551 มีประเภทของฮาร์ดดิสก์ต่อไปนี้ขนาดความหนาขนาดความหนา 3.5 นิ้ว = 4 นิ้ว×1 นิ้ว×5.75 นิ้ว (101.6 มิลลิเมตร×25.4 มิลลิเมตร×146 มิลลิเมตร) = 376.77344cm³เป็นฮาร์ดดิสก์ สำหรับคอมพิวเตอร์ตั้งโต๊ะ Desktop PC หรือคอมพิวเตอร์ขนาดใหญ่ Server ความเร็วในการหมุนจาน 10,000 7,200 5,400 RPM ตามลำดับ โดยมีความจุในปัจจุบันตั้งแต่ 80 GB ถึง 1 TBขนาดความหนา 2.5 = 2.75 นิ้ว× 0.374–0.59 นิ้ว×3.945 นิ้ว (69.85 มิลลิเมตร×9.5–15 มิลลิเมตร×100 มิลลิเมตร) = 66.3575cm³-104.775cm³นิ้วเป็นฮาร์ดดิสก์ สำหรับคอมพิวเตอร์พกพา Notebook , Laptop ,UMPC,Netbook, อุปกรณ์มัลติมีเดียพกพา ความเร็วในการหมุนจาน 5,400 RPM โดยมีความจุในปัจจุบันตั้งแต่ 60 GB ถึง 320 GBขนาดความหนา1.8 นิ้ว: 54 มิลลิเมตร×8 มิลลิเมตร×71 มิลลิเมตร= 30.672cm³ขนาดความหนา1 นิ้ว: 42.8 มิลลิเมตร×5 มิลลิเมตร×36.4 มิลลิเมตรขนาดความหนา0.85 นิ้ว: 24 มิลลิเมตร×5 มิลลิเมตร×32 มิลลิเมตรยิ่งมีความจุมาก ก็จะยิ่งทำให้การทำงานมีประสิทธิภาพมากขึ้น โดยความต้องการของตลาดในปัจจุบันที่ต้องการแหล่งเก็บข้อมูลที่มีความจุในปริมาณมาก มีความน่าเชื่อถือในด้านการรักษาความปลอดภัยของข้อมูล และไม่จำเป็นต้องต่อเข้ากับอุปกรณ์ที่ใหญ่กว่าอันใดอันหนึ่งได้นำไปสู่ฮาร์ดดิสก์รูปแบบใหม่ต่างๆ เช่นกลุ่มจานบันทึกข้อมูลอิสระประกอบจำนวนมากที่เรียกว่าเทคโนโลยี RAID รวมไปถึงฮาร์ดดิสก์ที่มีลักษณะเชื่อมต่อกันเป็นเครือข่าย เพื่อที่ผู้ใช้จะได้สามารถเข้าถึงข้อมูลในปริมาณมากได้ เช่นฮาร์ดแวร์ NAS network attached storage เป็นการนำฮาร์ดดิสก์มาทำเป็นเครื่อข่ายส่วนตัว และระบบ SAN storage area network เป็นการนำฮาร์ดดิสก์มาเป็นพื้นที่ส่วนกลางในการเก็บข้อมูล
หลักการทำงานของฮาร์ดดิสก์
หลักการบันทึกข้อมูลลงบนฮาร์ดดิสก์ไม่ได้แตกต่างจากการบันทึกลงบนเทปคาสเซ็ทเลย เพราะทั้งคู่ต้องใช้สารบันทึกคือสารแม่เหล็กเหมือนกัน สารแม่เหล็กนี้สามารถลบหรือเขียนได้ใหม่อยู่ตลอดเวลา โดยเมื่อบันทึกหรือเขียนไปแล้ว มันสามารถจำรูปแบบเดิมได้เป็นเวลาหลายปี ความแตกต่างระหว่างเทปคาสเซ็ทกับฮาร์ดดิสก์มีดังนี้สารแม่เหล็กในเทปคาสเซ็ท ถูกเคลือบอยู่บนแผ่นพลาสติกขนาดเล็ก เป็นแถบยาว แต่ในฮาร์ดดิสก์ สารแม่เหล็กนี้ จะถูกเคลือบอยู่บนแผ่นแก้ว หรือแผ่นอะลูมิเนียมที่มีความเรียบมากจนเหมือนกับกระจกสำหรับเทปคาสเซ็ท ถ้าคุณต้องการเข้าถึงข้อมูลในบริเวณใดบริเวณหนึ่ง ก็จะต้องเลื่อนแผ่นเทปไปที่หัวอ่าน โดยการกรอเทป ซึ่งต้องใช้เวลาหลายนาที ถ้าเทปมีความยาวมาก แต่สำหรับฮาร์ดดิสก์ หัวอ่านสามารถเคลื่อนตัวไปหาตำแหน่งที่ต้องการในเกือบจะทันทีแผ่นเทปจะเคลื่อนที่ผ่านหัวอ่านเทปด้วยความเร็ว 2 นิ้วต่อวินาที (5.08 เซนติเมตรต่อวินาที) แต่สำหรับหัวอ่านของฮาร์ดดิสก์ จะวิ่งอยู่บนแผ่นบันทึกข้อมูล ที่ความเร็วในการหมุนถึง 3000 นิ้วต่อวินาที (ประมาณ 170 ไมล์ต่อชั่วโมง หรือ 270 กิโลเมตรต่อชั่วโมง)ข้อมูลในฮาร์ดดิสก์เก็บอยู่ในรูปของโดเมนแม่เหล็ก ที่มีขนาดเล็กมากๆ เมื่อเทียบกับโดเมนของเทปแม่เหล็ก ขนาดของโดเมนนี้ยิ่งมีขนาดเล็กเท่าไร ความจุของฮาร์ดดิสก์จะยิ่งมีขนาดเพิ่มขึ้นเท่านั้น และสามารถเข้าถึงข้อมูลได้ในเวลาสั้นเครื่องคอมพิวเตอร์ตั้งโต๊ะปัจจุบันจะมีความจุของฮาร์ดดิสก์ประมาณ 60 ถึง 200 จิกะไบต์ ข้อมูลที่เก็บลงในฮาร์ดดิสก์ เก็บอยู่ในรูปของไฟล์ ซึ่งประกอบด้วยข้อมูลที่เรียกว่า ไบต์ : ไบต์คือรหัส แอสกี้ ที่แสดงออกไปตัวอักษร รูปภาพ วีดีโอ และเสียง โดยที่ไบต์จำนวนมากมาย รวมกันเป็นคำสั่ง หรือโปรแกรมทางคอมพิวเตอร์ มีหัวอ่านของฮาร์ดดิสก์อ่านข้อมูลเหล่านี้ และนำข้อมูลออกมา ผ่านไปยังตัวประมวลผล เพื่อคำนวณและแปรผลต่อไปเราสามารถคิดประสิทธิภาพของฮาร์ดดิสก์ได้ 2 ทางคืออัตราการไหลของข้อมูล (Data rate) คือจำนวนไบต์ต่อวินาที ที่หัวอ่านของฮาร์ดดิสก์สามารถจะส่งไปให้กับซีพียูหรือตัวประมวลผล ซึ่งปกติมีอัตราประมาณ 5 ถึง 40 เมกะไบต์ต่อวินาทีเวลาค้นหา (Seek time) เวลาที่ข้อมูลถูกส่งไปให้กับซีพียู โดยปกติประมาณ 10 ถึง 20 มิลลิวินาที
การเก็บข้อมูล
ข้อมูลที่เก็บลงในฮาร์ดดิสก์จะอยู่บนเซกเตอร์และแทร็ก แทร็กเป็นรูปวงกลม ส่วนเซกเตอร์เป็นเสี้ยวหนึ่งของวงกลม อยู่ภายในแทร็กดังรูป แทร็กแสดงด้วยสีเหลือง ส่วนเซกเตอร์แสดงด้วยสีแดง ภายในเซกเตอร์จะมีจำนวนไบต์คงที่ ยกตัวอย่างเช่น 256 ถึง 512 ขึ้นอยู่กับว่าระบบปฏิบัติการของคอมพิวเตอร์จะจัดการแบ่งในลักษณะใด เซกเตอร์หลายๆ เซกเตอร์รวมกันเรียกว่า คลัสเตอร์ (Clusters) ขั้นตอน ฟอร์แมต ที่เรียกว่า การฟอร์แมตระดับต่ำ (Low -level format ) เป็นการสร้างแทร็กและเซกเตอร์ใหม่ ส่วนการฟอร์แมตระดับสูง (High-level format) ไม่ได้ไปยุ่งกับแทร็กหรือเซกเตอร์ แต่เป็นการเขียน FAT ซึ่งเป็นการเตรียมดิสก์เพื่อที่เก็บข้อมูลเท่านั้น
ฮาร์ดดิสก์ที่มีกลไกแบบปัจจุบันถูกประดิษฐ์ขึ้นเมื่อ พ.ศ. 2499 (1956) โดยนักประดิษฐ์ยุคบุกเบิกแห่งบริษัทไอบีเอ็ม เรย์โนล์ด จอห์นสัน ซึ่งในขณะนั้น ฮาร์ดดิสก์มีขนาดค่อนข้างใหญ่ มีเส้นผ่าศูนย์กลางถึง 20 นิ้ว มีความจุเพียงระดับเมกะไบต์เท่านั้น «โดยใช้หน่วยการเปรียบเทียบเป็น บระดับจิกะไบต์ในปัจจุบัน ซึ่ง 1,024MB = 1GB» ในตอนแรกใช้ชื่อเรียกว่า 'ฟิกส์ดิสก์ fixed disk หรือจานบันทึกที่ติดอยู่กับที่ ในบริษัท IBM เรียกว่า วินเชสเตอร์ส Winchestersต่อมาภายหลังจึงเรียกว่า ฮาร์ดดิสก์ จานบันทึกแบบแข็ง เพื่อจำแนกประเภทออกจาก ฟลอปปี้ดิสก์ จานบันทึกแบบอ่อนตั้งแต่เข้าสู่ช่วงคริสต์ศตวรรษที่ 21 เป็นต้นมา ฮาร์ดดิสก์สามารถพบได้ในอุปกรณ์อิเล็กทรอนิกส์ทั่วไป ไม่เฉพาะภายในคอมพิวเตอร์ทุกเครื่องเท่านั้น แต่ยังรวมไปถึงอุปกรณ์อิเล็กทรอนิกส์อื่นๆ อีกด้วย เช่น เครื่องเล่นเอ็มพีทรี, เครื่องบันทึกภาพดิจิทัล, กล้องถ่ายรูป, คอมพิวเตอร์ขนาดพกพา PDA จนกระทั่งภายใน โทรศัพท์มือถือ บางรุ่นตั้งแต่ภายในปี พ.ศ. 2548 เป็นต้นมาเช่นยี่ห้อ (โนเกีย และ ซัมซุง สองบริษัทผู้ผลิตโทรศัพท์มือถือรายแรกที่จำหน่ายโทรศัพท์มือถือที่มีฮาร์ดดิสก์
ขนาดและความจุ
ความจุของฮาร์ดดิสก์โดยทั่วไปในปัจจุบันนั้นมีตั้งแต่ 20 จิกะไบต์ ถึง 1.5 เทระไบต์ขนาดความหนา 8 inch: 9.5 นิ้ว×4.624 นิ้ว×14.25 นิ้ว (241.3 มิลลิเมตร×117.5 มิลลิเมตร×362 มิลลิเมตร)ขนาดความหนา 5.25 inch: 5.75 นิ้ว×1.63 นิ้ว×8 นิ้ว (146.1 มิลลิเมตร×41.4 มิลลิเมตร×203 มิลลิเมตร)
ปัจจุบันภายในปี 2551 มีประเภทของฮาร์ดดิสก์ต่อไปนี้ขนาดความหนาขนาดความหนา 3.5 นิ้ว = 4 นิ้ว×1 นิ้ว×5.75 นิ้ว (101.6 มิลลิเมตร×25.4 มิลลิเมตร×146 มิลลิเมตร) = 376.77344cm³เป็นฮาร์ดดิสก์ สำหรับคอมพิวเตอร์ตั้งโต๊ะ Desktop PC หรือคอมพิวเตอร์ขนาดใหญ่ Server ความเร็วในการหมุนจาน 10,000 7,200 5,400 RPM ตามลำดับ โดยมีความจุในปัจจุบันตั้งแต่ 80 GB ถึง 1 TBขนาดความหนา 2.5 = 2.75 นิ้ว× 0.374–0.59 นิ้ว×3.945 นิ้ว (69.85 มิลลิเมตร×9.5–15 มิลลิเมตร×100 มิลลิเมตร) = 66.3575cm³-104.775cm³นิ้วเป็นฮาร์ดดิสก์ สำหรับคอมพิวเตอร์พกพา Notebook , Laptop ,UMPC,Netbook, อุปกรณ์มัลติมีเดียพกพา ความเร็วในการหมุนจาน 5,400 RPM โดยมีความจุในปัจจุบันตั้งแต่ 60 GB ถึง 320 GBขนาดความหนา1.8 นิ้ว: 54 มิลลิเมตร×8 มิลลิเมตร×71 มิลลิเมตร= 30.672cm³ขนาดความหนา1 นิ้ว: 42.8 มิลลิเมตร×5 มิลลิเมตร×36.4 มิลลิเมตรขนาดความหนา0.85 นิ้ว: 24 มิลลิเมตร×5 มิลลิเมตร×32 มิลลิเมตรยิ่งมีความจุมาก ก็จะยิ่งทำให้การทำงานมีประสิทธิภาพมากขึ้น โดยความต้องการของตลาดในปัจจุบันที่ต้องการแหล่งเก็บข้อมูลที่มีความจุในปริมาณมาก มีความน่าเชื่อถือในด้านการรักษาความปลอดภัยของข้อมูล และไม่จำเป็นต้องต่อเข้ากับอุปกรณ์ที่ใหญ่กว่าอันใดอันหนึ่งได้นำไปสู่ฮาร์ดดิสก์รูปแบบใหม่ต่างๆ เช่นกลุ่มจานบันทึกข้อมูลอิสระประกอบจำนวนมากที่เรียกว่าเทคโนโลยี RAID รวมไปถึงฮาร์ดดิสก์ที่มีลักษณะเชื่อมต่อกันเป็นเครือข่าย เพื่อที่ผู้ใช้จะได้สามารถเข้าถึงข้อมูลในปริมาณมากได้ เช่นฮาร์ดแวร์ NAS network attached storage เป็นการนำฮาร์ดดิสก์มาทำเป็นเครื่อข่ายส่วนตัว และระบบ SAN storage area network เป็นการนำฮาร์ดดิสก์มาเป็นพื้นที่ส่วนกลางในการเก็บข้อมูล
หลักการทำงานของฮาร์ดดิสก์
หลักการบันทึกข้อมูลลงบนฮาร์ดดิสก์ไม่ได้แตกต่างจากการบันทึกลงบนเทปคาสเซ็ทเลย เพราะทั้งคู่ต้องใช้สารบันทึกคือสารแม่เหล็กเหมือนกัน สารแม่เหล็กนี้สามารถลบหรือเขียนได้ใหม่อยู่ตลอดเวลา โดยเมื่อบันทึกหรือเขียนไปแล้ว มันสามารถจำรูปแบบเดิมได้เป็นเวลาหลายปี ความแตกต่างระหว่างเทปคาสเซ็ทกับฮาร์ดดิสก์มีดังนี้สารแม่เหล็กในเทปคาสเซ็ท ถูกเคลือบอยู่บนแผ่นพลาสติกขนาดเล็ก เป็นแถบยาว แต่ในฮาร์ดดิสก์ สารแม่เหล็กนี้ จะถูกเคลือบอยู่บนแผ่นแก้ว หรือแผ่นอะลูมิเนียมที่มีความเรียบมากจนเหมือนกับกระจกสำหรับเทปคาสเซ็ท ถ้าคุณต้องการเข้าถึงข้อมูลในบริเวณใดบริเวณหนึ่ง ก็จะต้องเลื่อนแผ่นเทปไปที่หัวอ่าน โดยการกรอเทป ซึ่งต้องใช้เวลาหลายนาที ถ้าเทปมีความยาวมาก แต่สำหรับฮาร์ดดิสก์ หัวอ่านสามารถเคลื่อนตัวไปหาตำแหน่งที่ต้องการในเกือบจะทันทีแผ่นเทปจะเคลื่อนที่ผ่านหัวอ่านเทปด้วยความเร็ว 2 นิ้วต่อวินาที (5.08 เซนติเมตรต่อวินาที) แต่สำหรับหัวอ่านของฮาร์ดดิสก์ จะวิ่งอยู่บนแผ่นบันทึกข้อมูล ที่ความเร็วในการหมุนถึง 3000 นิ้วต่อวินาที (ประมาณ 170 ไมล์ต่อชั่วโมง หรือ 270 กิโลเมตรต่อชั่วโมง)ข้อมูลในฮาร์ดดิสก์เก็บอยู่ในรูปของโดเมนแม่เหล็ก ที่มีขนาดเล็กมากๆ เมื่อเทียบกับโดเมนของเทปแม่เหล็ก ขนาดของโดเมนนี้ยิ่งมีขนาดเล็กเท่าไร ความจุของฮาร์ดดิสก์จะยิ่งมีขนาดเพิ่มขึ้นเท่านั้น และสามารถเข้าถึงข้อมูลได้ในเวลาสั้นเครื่องคอมพิวเตอร์ตั้งโต๊ะปัจจุบันจะมีความจุของฮาร์ดดิสก์ประมาณ 60 ถึง 200 จิกะไบต์ ข้อมูลที่เก็บลงในฮาร์ดดิสก์ เก็บอยู่ในรูปของไฟล์ ซึ่งประกอบด้วยข้อมูลที่เรียกว่า ไบต์ : ไบต์คือรหัส แอสกี้ ที่แสดงออกไปตัวอักษร รูปภาพ วีดีโอ และเสียง โดยที่ไบต์จำนวนมากมาย รวมกันเป็นคำสั่ง หรือโปรแกรมทางคอมพิวเตอร์ มีหัวอ่านของฮาร์ดดิสก์อ่านข้อมูลเหล่านี้ และนำข้อมูลออกมา ผ่านไปยังตัวประมวลผล เพื่อคำนวณและแปรผลต่อไปเราสามารถคิดประสิทธิภาพของฮาร์ดดิสก์ได้ 2 ทางคืออัตราการไหลของข้อมูล (Data rate) คือจำนวนไบต์ต่อวินาที ที่หัวอ่านของฮาร์ดดิสก์สามารถจะส่งไปให้กับซีพียูหรือตัวประมวลผล ซึ่งปกติมีอัตราประมาณ 5 ถึง 40 เมกะไบต์ต่อวินาทีเวลาค้นหา (Seek time) เวลาที่ข้อมูลถูกส่งไปให้กับซีพียู โดยปกติประมาณ 10 ถึง 20 มิลลิวินาที
การเก็บข้อมูล
ข้อมูลที่เก็บลงในฮาร์ดดิสก์จะอยู่บนเซกเตอร์และแทร็ก แทร็กเป็นรูปวงกลม ส่วนเซกเตอร์เป็นเสี้ยวหนึ่งของวงกลม อยู่ภายในแทร็กดังรูป แทร็กแสดงด้วยสีเหลือง ส่วนเซกเตอร์แสดงด้วยสีแดง ภายในเซกเตอร์จะมีจำนวนไบต์คงที่ ยกตัวอย่างเช่น 256 ถึง 512 ขึ้นอยู่กับว่าระบบปฏิบัติการของคอมพิวเตอร์จะจัดการแบ่งในลักษณะใด เซกเตอร์หลายๆ เซกเตอร์รวมกันเรียกว่า คลัสเตอร์ (Clusters) ขั้นตอน ฟอร์แมต ที่เรียกว่า การฟอร์แมตระดับต่ำ (Low -level format ) เป็นการสร้างแทร็กและเซกเตอร์ใหม่ ส่วนการฟอร์แมตระดับสูง (High-level format) ไม่ได้ไปยุ่งกับแทร็กหรือเซกเตอร์ แต่เป็นการเขียน FAT ซึ่งเป็นการเตรียมดิสก์เพื่อที่เก็บข้อมูลเท่านั้น
สมัครสมาชิก:
บทความ (Atom)